Simple PDE Model of Spot Replication in Any Dimension

نویسندگان

  • Chiun-Chuan Chen
  • Theodore Kolokolnikov
چکیده

We propose a simple PDE model which exhibits self-replication of spot solutions in any dimension. This model is analysed in one and higher dimensions. In the radially symmetric case, we rigorously demonstrate that a weakened version of the conditions proposed by Nishiura and Ueyama for self-replication are satisfied. In dimension three, two different types of replication mechanisms are analysed. The first type is due to radially symmetric instability, whereby a spot bifurcates into a ring. The second type is non-radial instability, which causes a spot to deform into a peanut-like shape, and eventually split into two spots. Both types of replication are observed in our model, depending on parameter choice. Numerical simulations are shown confirming our analytical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability of Localized Spot Patterns for the Brusselator on the Sphere

In the singularly perturbed limit of an asymptotically small diffusivity ratio ε, the existence and stability of localized quasi-equilibrium multi-spot patterns is analyzed for the Brusselator reaction-diffusion model on the unit sphere. Formal asymptotic methods are used to derive a nonlinear algebraic system that characterizes quasi-equilibrium spot patterns, and to formulate eigenvalue probl...

متن کامل

THE USE OF A RUNGE-KUTTA SCHEME FOR AN ODE-PDE MODEL OF SUPPLY CHAINS

Integrating various suppliers to satisfy market demand is of great importance for e ective supply chain management. In this paper, we consider the ODE-PDE model of supply chain and apply a classical explicit fourth-order Runge-Kutta scheme for the related ODE model of suppliers. Also, the convergence of the proposed method is proved. Finally a numerical example is studied to demonstrate the acc...

متن کامل

The Stability and Slow Dynamics of Localized Spot Patterns for the 3-D Schnakenberg Reaction-Diffusion Model

On a finite three-dimensional domain Ω, a hybrid asymptotic-numerical method is employed to analyze the existence, linear stability, and slow dynamics of localized quasi-equilibrium multi-spot patterns of the Schnakenberg activatorinhibitor model with bulk feed rate A in the singularly perturbed limit of small diffusivity ε of the activator component. By approximating each spot as a Coulomb sin...

متن کامل

Global Attractor and Stabilization for a Coupled Pde-ode System

We study the asymptotic behavior of solutions of one coupled PDE-ODE system arising in mathematical biology as a model for the development of a forest ecosystem. In the case where the ODE-component of the system is monotone, we establish the existence of a smooth global attractor of finite Hausdorff and fractal dimension. The case of the non-monotone ODE-component is much more complicated. In p...

متن کامل

Elimination of Hard-Nonlinearities Destructive Effects in Control Systems Using Approximate Techniques

Many of the physical phenomena, like friction, backlash, drag, and etc., which appear in mechanical systems are inherently nonlinear and have destructive effects on the control systems behavior. Generally, they are modeled by hard nonlinearities. In this paper, two different methods are proposed to cope with the effects of hard nonlinearities which exist in friction various models. Simple inver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2012